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1 SERIALIZERS

SECTION I --- ABSTRACT

This paper presents an implementation mechanism, specification language, and proof techniques
for problems involving the arbitration of concurrent requests to shared resources. This mechanism is
the serializer, which may be described as a kind of protection mechanism, in that it prevents improper
orders of access to a protected resource. Serializers are a generalization and improvement of the
monitor mechanism of Brinch-Hansen and Hoare.

Serializers attempt to systematize and abstract desirable structural features of synchronization
control structure into a coherent language construct. They represent an improvement in the modularity
of synchronization over monitors in several respects. Monitors synchronize requests by providing a pair
of operations for each request type [examples are STARTREAD/ENDREAD and
STARTWRITE/ENDWRITE for the readers-writers problemsl. Such a pair of operations must be
used in a certain order for the synchronization to work properly, yet nothing in the monitor construct
enforces this use. Serializers incorporate this structural aspect of synchronization in a unified
mechanism to guarantee proper check-in and check-out. In scheduling access to a protected resource, it
is often necessary to wait in a queue for a certain condition before it continues execution. Monitors
require that a process waiting in a queue will remain dormant forever, unless another process explicitly
signals to the dormant process that it should continue. Serializers improve the modularity of
synchronization by providing that the condition for resuming execution must be explicitly stated when a
process enters a queue, making it it unnecessary for processes to signal other processes. Each process
determines for itself the conditions required for its further execution.

The behavior of a serializer is defined axiomatically in terms of causal and incidental relations
among events using the actor message-passing model of computation. Different versions of the
“readers-writers” problems are used to illustrate how the structure of a serializer corresponds in a
natural way to the structure of the specification of synchronization problems.

In this paper we present specification and proof techniques using partial orders on computational
events for dealing with problems involving fairness, starvation, and guaranteed concurrency. Our
techniques represent a significant advance over previously developed techniques using global states.
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SECTION II --- PARALLELISM in PROBLEM SOLVING

Serializers have been developed as a modular arbitration primitive for actor systems to aid
investigating the issues of parallelism in problem solving. Conceptually an actor is an ob ject that has
both procedural and data aspects. The behavior of a primitive actor such as a serializer is defined by
the ordering relationships among the events caused by the actor.

We now feel that parallelism may have a more important role than previously realized in
explicating the structure of higher level symbolic processing. Until recently it has been widely accepted
that parallelism is not suited for the higher level symbolic processing of problem solving. Most
psychological evidence seems to point to individual humans as being almost entirely serial in their high
level problem solving.

Recently the development of actor message passing semantics has brought about a shift in our
paradigm for problem solving. Early programs written to be expert in some domain were thought to be
analogous to an individual human expert who was expert in the domain. Most programs were
developed on the basis that there should be a single unified coherent intelligence directing all aspects of
the problem solving in a serial fashion. The development of the actor model of computation has
encouraged us to develop a paradigm based on a society of experts communicating by passing
messages. This switch in paradigm has provided us with a rich source o ideas for problem solving
strategies. We are attempting to develop a dialogue style of programming which places its emphasis on
the modular distribution of knowledge and clean means of communication between pieces of knowledge.
Thinking and programming in this new paradigm has in turn caused us to re-evaluate the case for
parallelism. We note that societies often make good use of parallelism for a variety of purposes.

The additional programming burden imposed by parallelism is the task of arbitrating the
activities of modules running in parallel. By analyzing the structure of problem solvers that attempt to
use parallelism at the highest levels of problem solving, we hope to further explicate the structure of
problem solving. The explication of a modular arbitration primitive in this paper should contribute
toward that aim.

We see a need for the development of language constructs that are at least partially chosen for
their provability. A language feature providing synchronization should be designed to provide usable
axioms about the possible orders of events in a program. The language feature should guarantee that
conditions needed to prove properties of programs are explicit in the axioms for the language feature.

Serializers have been designed to facilitate the proof that schedulers implemented using them
satisfy their specifications. The specifications of a protected resource typically involve stating both
integrity and scheduling constraints. An integrity specification typically takes the form of a consistency
constraint. A typical example of an integrity specification might be that the position and velocity of an
airplane must be recorded for the same instant of time. A scheduling specification typically takes the
form of a constraint on the time order of certain events. A typical example of a scheduling
specification is that if two requests to write in a data baseare received in a certain order then the first
request received will be honored before the other. We would like to be able to demonstrate how
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implementing protected resources using serializers makes it easier to prove that they satisfy their
specifications. In particular, we would like to develop techniques for proving that schedulers
implemented using serializers guarantee a reply to each request received. Guaranteeing that a reply will
be sent for every request received is a stronger and more useful property than merely being free of

deadly embrace, which is the scheduling specification most extensively treated in the literature on
synchronization.
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SECTION III --- SERIALIZERS

e

IILl --- Concept of a Serializer

In this section we will describe an abstract mechanism called a serializer for guaranteeing the
integrity of a protected resource. The mechanism is an abstraction and encapsulation of the method
commonly used in operating systems. A detailed analysis of the facilities needed will be used to
motivate our design decisions.

A serializer bears an analogy to the front desk of a hospital in that only one person can check in
or out at a time. The front desk of a hospital serves to schedule the entrance and exit of people in the
hospital. Entering or leaving the hospital is impossible without checking through the front desk.
Various queues are maintained for people who are waiting. In addition records are maintained of
where people are within the hospital.

Serializers are modular in the sense that they can be constructed to encase the resource to be
protected in such a way that it can only be accessed by passing through the serializer. A serializer
should be constructed to surround the protected resource in such a way that it is impossible to
accidently avoid passing through it when using the protected resource. We shall avoid in this paper
the issues involved with exactly how one guarantees that a serializer has sole possession of a resource, or
even if cooperating serializers might share access to a resource. The reader may assume that every
serializer we deal with in this paper has sole access to the encased protected resource.

We can diagram how a serializer can be used to scheduie access to a protected resource P as follows:
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Diagram of Serializer Encasing a Protected Resource

Each arrow in the above diagram is labeled with the kind of computational event it represents.
The events fall into two disjoint categories that are totally ordered in time: those which
GAIN-POSSESSION and those which RELEASE-POSSESSION of the serializer. Each event in the
former category subsequently causes an event in the latter category to occur. Furthermore after a
CAIN-POSSESSION event has occurred, then another such event will not occur until after the former
has caused a RELEASE-POSSESSION event. A typical sequence of events occurring in the use of the
protected resource P begins with a SERIALIZER-REQUEST event in which the serializer receives a
message M which is intended for the protected resource P. The request must eventually result in an
ENTRY event which gains possession of the serializer. A GUARANTEE request can be used in order
to wait until some condition is true before proceeding. Such a request releases possession of the
serializer. If a reply is received for the GUARANTEE request then it will be called an ESTABLISHED
event because the condition is guaranteed to have been established at the time of the reply. Thus each
ESTABLISHED event regains possession of the serializer at a point in time when the condition is
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guaranteed to be true. The above sequence of GUARANTEE and ESTABLISHED events may occur a
number of times in order to sequentially guarantee a number of conditions in succession. When the
proper condition for using a protected resource has been established then possession of the serializer
can be released by a JOIN-CROWD event which records that there is another process in the crowd
using P. Next the message M is delivered to the protected resource P in a RESOURCE-REQUEST
event. Eventually the protected resource P may produce a reply R to the request which will be called a
RESOURCE-REPLY event. The RESOURCE-REPLY will eventually result in a LEAVE-CROWD
event which regains possession of the serializer and records that the process is no longer in the crowd
using P. The next event is an EXIT event, which releases possession and causes a
SERIALIZER-REPLY event in which the message R is sent as the reply to the original
SERIALIZER-REQUEST event.

Serializers derive their name from the fact that all of the events that gain and release possession
of the serializer are totally ordered (serial) in time. We assume that every serializer is written such that
an event gaining possession is always followed by one releasing possession (usually this is trivial to
demonstrate). In the above diagram the interior of the serializer has two “holes”, in which a process
may temporarily release possession of the serializer. The purpose of the hole entered by ENQUEUE is
to wait for some condition to become true. The purpose of the hole entered by JOIN-CROWD is to
allow parallelism in the use of protected resources by releasing the serializer to another process. There
may be any number of holes of either variety.

To understand the behavior of serializers, one must understand the ways that possession of a
serializer is gained and released. There are three ways to gain possession of a serializer:

An ENTRY event, which gains possession as a result of a SERIALIZER-REQUEST
event. -

An ESTABLISHED event, which regains possession as a result of a GUARANTEE
request with a condition established to be true.

A LEAVE-CROWD event, which regains possession as a result RESOURCE-REPLY
event from a protected resource.
There are three ways to release possession of a serializer:

A GUARANTEE event, which occurs in order to guarantee that some condition is true
before continuing execution.

A JOIN-CROWD event, which records that a process is using the protected resource.

" An EXIT event, which causes a reply to the original SERIALIZER-REQUEST event.
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For any given serializer and process after an ENTRY event and before the corresponding EXIT
event, exactly one of the following two conditions will hold:

The process is in sole possession of the serializer (executing in the shaded region of the
diagram).

The process. has released possession in order to wait for some condition before
proceeding or to join a crowd of processes executing in some protected resource.
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SECTION 1V --- SERIALIZER CONSTRUCTS
—==2cablabi CONSIRUCTS

In this section we present the fanguage constructs used in the serializer mechanism. They have
been developed to facilitate the implementation of the abilities enumerated above. We should note that
while a LISP-like syntax is used, we regard the choice of syntax as minor.

IV.I --- Creation

A serializer is constructed by an expression of the form

(create_serializer
{queues: collection_oi_gueues, for_the_serializer)
(crowds: collection_of_crowds,_for_the_serializer)
(entry: body_of_serislizer))

The queues are used to provide first-in-first-out service to processes waiting for some condition
in order to continue execution. The crowds are used to record which protected resources are in use.

If an actor constructed by an expression of the form given above is sent a message M in a
SERIALIZER-REQUEST event then M will eventually be sent to body_of serislizer in an ENTRY event
which gains possession of the serializer. At most one process can be in possession of a serializer at one

time. The queues and crowds for the serializer relate to its internal working and are explained in
greater detail below.

IV2 --- Queues

Queues are provided to allow a process to wait until some condition is met before proceeding
further. Serializers provide an erqueue command which has the following syntax to meet this need:

(enqueue the_wait queue

(guarantee: the_condition)
(then: the_continuation))

A process executing the above command immediately releases possession of the serializer with a
ENQUEUE the_wait_queve to GUARANTEE the_condition event. It does not regain possession and

continue with execution of the_continuation with an ESTABLISHED the_condition event until all of the
foliowing pre-requisites hold: :

I: All the previous GUARANTEE requests in the wait_queve have received replies that
the condition was ESTABLISHED i.e. the process is at the front of the queue.

2: the_condition is true.

SO ————

e
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3: A JOIN-CROWD, EXIT, or GUARANTEE event has just occurred releasing
possession of the serializer.

Note that all of these pre-requisites must be simultaneously satisfied before execution will continue with
the_continuation.

It may be the case that there is more than one process which satisfies the above pre-requisites
because each is at the front of a different queue. In this case it is not obvious which process should
gain possession next. We recommend that serializers be constructed so that they satisfy the following
property:

4: There is no other process such that the above three conditions hold.

If all four conditions hold then for a process, the it is guaranteed to get possession of the
serializer next before any further ENTRY or LEAVE-CROWD events occur. In other words,
conceptually at least, the condition that must be guaranteed for further execution is evaluated for each
process that is at the front of a queue every time possession of the serializer is released. If there is only
one whose condition is true then it gets possession next.

The condition in the guarantee: clause of the enqueue command is potentially any Boolean
expression without side effects. The expression is evaluated whenever possession of the serializer is
yielded. We have found one particular form of expression to be quite useful, which is a test for
emptiness of queues or crowds. This is written as:

r (empty: queuey queue, ...)

Each queue listed must be empty for the expression to be true. The evaluation of an expression of the
above form has no side-effects. It simply calculates the Boolean value for the expression.

We wish the_condition to be guaranteed to be true when execution continues with the_continuation.
This depends on several constraints:

I: The evaluation of the_condition is free of side-ef fects.

——— e

2. The value of the_condition must be unaffected by any execution by any process which does

——

not possess the serializer.

Given these constraints, we can say that the_condition must be true when execution resumes with
the_continuation of an enqueue command.
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IV3 - Relaying Messages

Within a serializer it is necessary to be able to temporarily release possession of the serializer in
order to relay the message to the protected resource and then later regain possession with the reply from

the protected resource. A command of the following form accomplishes this by transmitting a_message
to a_protected_resource:

(relay_to a_protected_resource
(message: a_message)

(¢hru: a_crowd)

—_

(then_to: continuation_for_reply))

An entry is made in a_crowd to record the presence of a process in a_protected_resource and then
possession is yielded. After a_protected resource has replied to a_message and possession of the serializer
has been regained by a LEAVE-CROWD event then the entry is removed from a_crowd and the reply
received is sent to continuation_for_reply. We have observed that in many applications the reply received
from a_protected resource is immediately returned as the value of the serializer in an EXIT event.
Therefore, we adopt the convention that if the then_to: clause is omitted from a relay_to expression,
then an EXIT will be performed with the message received from the protected resource.

During the time between the JOIN-CROWD and the LEAVE-CROWD events, the entry is a
member of a_crowd. Thus by inspecting the various crowds of a serializer it is possible to determine

which resources currently have processes executing within them. Crowds provide a better abstraction

than integer counts for keeping records of which processes are currently executing in protected
resources.
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SECTION V_--- BEHAVIORAL PROPERTIES OF SERIALIZERS

The properties of serializers are stated somewhat informally in this paper since we believe that
serializers aid intuitive reasoning about paralielism. A more rigorous treatment is possible, but is
beyond the scope of this paper.

Behavioral properties of serializers can be stated in terms of events and relations between events.
We shall use the notation

E; > Eg

to indicate that the event E; precedes the event Eg. The precedes relationship is an acyclic partial order.
The events of processes that do not interact are not ordered.

In the rest of the paper we will require that the protected resource is well-behaved in the sense
that for each request sent to the resource exactly one reply will be received.

Another requirement we will make is that every process that comes into possession of a serializer
will eventually release possession. The intent is to exclude behaviors where the serializer is locked up
forever by a process which is performing an infinite computation while in possession. We believe that
this condition will usually be trivial to satisfy in practice since the code in a serializer simply has to
decide whether to wait for some condition or join some crowd of processes executing in a protected
resource. This decision must be made as efficiently as possible in order to maximize the thruput of the

serializer. Otherwise the serializer can seriously degrade the efficiency of a system by becoming a
bottleneck.

V.1 - Property of Mutual Exclusion

The most fundamental property of a serializer is that processes mutually exclude one another
from possession so that at most one process has possession at any given instant. For any given serializer
there is a totai ordering in time for all of the ENTRY, GUARANTEE, ESTABLISHED,
JOIN-CROWD, LEAVE-CROWD, and EXIT events of that serializer. A process gains possession of a
serializer starting with an ENTRY, ESTABLISHED, or LEAVE-CROWD event, and retains possession
until it releases possession with a GUARANTEE, JOIN-CROWD, or EXIT event. We will use
subscripts to indicate distinct invocations of a serializer. The property of mutual exclusion of
possession of the serializer can be stated in terms of events as follows:

Either the i-th possession precedes the j-th possession
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GAIN-POSSESSION;
I

v
RELEASE-POSSESSION; —=> GAIN-POSSESSION J
I
v
RELEASE-POSSESSION i
or the j-th possession precedes the i-th.
GAIN-POSSESSION j
l
v
GAIN-POSSESSION; <-- RELEASE-POSSESSION J

|
v

RELEASE-POSSESSION,;

where a GAIN-POSSESSION; event is either an ENTRY;, ESTABLISHED,, or LEAVE-CROWD;
event; and RELEASE-POSSESSION, is the next event after GAIN-POSSESSION; which is a
GUARANTEE;, JOIN-CROWD,, or EXIT; event.

V.2 - Gaining Possession

We would like to guarantee that any process that sends a request or reply to a serializer must
eventually gain possession of the serializer. This property is satisfied by any serializer that has no loops
in which possession of the serializer is not released in the loop. It is not clear that it is ever useful to
violate this restriction. All of the serializer examples in this paper trivially satisfy this restriction
because they have no loops at all.

If the above restriction is satisfied then any SERIALIZER-REQUEST or RESOURCE-REPLY
event must eventually result in a GAIN-POSSESSION event. More precisely, If there is a
SERIALIZER-REQUEST in the history of a computation then it is followed by an ENTRY event.
Furthermore if there is a RESOURCE-REPLY event in the history of a computation then it is followed
by a LEAVE-CROWD event.
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V.2a --- First Come First Served for Entry

Since serializers are designed to implement scheduling of access to protected resources it must be
possible for them to observe the order of arrival of requests to the serializers in order to carry out
certain scheduling tasks. Thus we provide that requests for entry into the serializer will be served in
the order in which they arrive at the serializer. In terms of events this can be formalized by supposing
that SERIALIZER-REQUEST; and SERIALIZER-REQUESTJ are two events such that such that the
first arrives before the second:

SERIALIZER-REQUEST; --> SERIALIZER-REQUESTj

The next event after SERIALIZER-REQUEST; is ENTRY; and the next event after
SERIALIZER-REQUEST jis ENTRY i We require that these two events be related as follows:

ENTRY; =-> ENTRY j

V.2b --- First Come First Served for Re-Entry

Similarly it must be possible for a serializer to observe the order of arrival of replies to requests
sent to protected resources. Thus if RESOURCE-REPLY; precedes RESOURCE-REPLY j S0 that

RESOURCE-REPLY; -=> RESOURCE-REPLYI

then we require that

LEAVE-CROWD; == LEAVE-CROWD‘

V.3 --- Properties of Guaranteed Conditions

V.3a --- The Guaranteed Condition is True if Execution Continues

Let C be the condition guaranteed in an event of the form
ENQUEUE-GUARANTEE(
which is caused by executing an expression of the form
(enqueue q

(quarantee: C)
(then: ...))

If execution of the process continues, then the next event of the process is of the form
ESTABLISHEDg and C is true at the instant of this event.

S



SERIALIZERS 14

V.3b --- Internal Queues are First In First QOut

Suppose that q is an internal queue of the serializer § and that there are two events such that
ENQUEUES-GUARANTEEg --> ENQUEUE,-GUARANTEEC,
lie. such that the former precedes the latter in the total ordering of the serializer) and that
ESTABLISHED(, is the next event after ENQUEUE, “GUARANTEEG,. Then there is an event
ESTABLISHEDG; which is the next event after ENQUE?JEQ-GUARANTEEM such that
ESTABLISHEDg; --> ESTABLISHEDg,
which says that ENQUEUEq-CUARANTEEm was served before ENQUEUEQ-GUARANTEEcz since

both guarantee requests were placed in the same queue.

V.3.c_--- Priority for Waiting Processes

Each time possession of a serializer is released, waiting processes are given the opportunity to
continue execution. This property of serializers simplifies proofs that a scheduler guarantees replies to
requests received and increases the responsiveness of schedulers by allowing waiting processes to proceed
as soon as possible. Roughly speaking, if there are any waiting processes “ready to go” when possession
of a serializer is released then the next event to gain possession of the serializer must be an
ESTABLISHED event which gives one of those processes possession. In terms of events, a process will
be said to be "ready to go” at the instant of a RELEASE-POSSESSION event if it is waiting because of
a previous ENQUEUEQ-GUARANTEEC event, but the corresponding ESTABLISHED event has not
yet occurred and the following properties hold:

I: The condition C is true.

2: The process is at the front of the queue. Therefore all previous events that waited
for some condition on Q have already continued with their condition ESTABLISHED.

The above properties give internal queues priority over external queues.
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SECTION VI --- RELATIONSHIP TO SEMAPHORES

Vil --- Mutual Exoclusion

One of the most common uses of semaphores is to implement mutual exclusion of execution in
protected resources. It is relatively easy to implement mutual exclusion using a semaphore. The idea is
for each process to perform a P operation on the semaphore before using the resource and then to
perform a V operation when finished using the resource. The program mutusl_exclusion_1 given below
can be used to construct systems that insure that a resource does not receive any messages while still
processing a previous message. Thus processes are guaranteed to mutually exclude each other from
overlapping execution in the protected resource. This simple example is presented to illustrate more
concretely the concept of encasing a resource in a serializer.

{mutual_exclusion_1 =resource) = smutual exclusion of a resource is enforced by
(let (mutex = (create_binary_semaphore)) sconstructing a new binary semaphore called mutex

in (=> =a_message sthen returning an actor such that whenever it receives a message

(P mutex) :performs a P operation on mutex

(let (result = (resource <= a_message)) sthen sends the message 10 the resource

in ssuch that after the result is received

(V mutex) ;a V operation is performed on the semaphore

result))) sand the result is returned

Semaphores are a very primitive synchronization method which can be used to implement the
facilities needed by modular schedulers. In some ways semaphores are analogous to the goto construct
which can be used to implement the control structures needed for modular programming. Serializers
abstract the control structure of schedulers such as the simple one presented above. They can be used to
increase the modularity of implementations by making the structure of the implementation more closely
match the structure of the task to be accomplished. In this way the synthesis of schedulers from
specifications is facilitated because serializers provide facilities for directly implementing common
aspects of specifications for schedulers. Furthermore proofs that implementations satisfy their
specifications is facilitated because the structure of the serializer guarantees many properties of the
implementation that would otherwise have to be painfully extracted from a global analysis of the
implementation.

The fundamental integrity constraint for mutual exclusion of the use of a resource is that if two
requests SERTIALIZER-REQUEST; and SERIAL!ZER-REQUESTJ are made to the serializer then
either the i-use completely precedes the j-use

RESOURCE-REQUEST;

I
v

RESOURCE-REPLY; - RESOURCE-REQUESTJ

|
v

RESOURCE-REPLY J
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or the j-use completely precedes the i-use.

RESOURCE-REQUEST,
I
v
RESOURCE-REQUEST; <~  RESOURCE-REPLY,

I
v

RESOURCE-REPLY;

which says that one process must enter and leave the protected resource before the other enters.

(mutual_exclusion_2 =resource) = ito enforce muinal exclusion for a resource
(create_serializer sconstruct a serializer
(queues: q) swith one queue q
(crowds: ¢) ;and one crowd ¢
{entry: ssuch that when entry is geined to the serializer
(=> =a_message ;with a message
(enqucue q sthen wait on q
(quarantee: (empty: c)) ifor the condition that the crowd c is empty

(¢hen: sthen

{relay_to resource ssent to the resource

(message: a_message) ithe message received by the serializer

(thru: c))))))) ;passing through the croswd ¢

It is easy to see that mutual_exclusion_2 implements the integrity specification given above. The
following invariant is true each time a process gains or releases possession:

((size c) S 1)

The only way to enter the resource through the serializer is to pass through the crowd ¢. Furthermore
the crowd is guaranteed to be empty whenever a message is relayed to the resource.

Actually mutual_exclusion_2 implements a stronger specification: namely that if
SERIALIZER-REQUEST; -->  SERIALIZER-REQUEST j
then

RESOUKCE-REQUEST;

I
v

RESOURCE-REPLY; -> RESOURCES-REQUEST j

The proof of this stronger specification is given below. If we suppose that
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SERIALIZER-REQUEST, -> SERIALIZER-REQUESTJ

then

SERIALIZER-R EQUEST; -> SER IALIZER-REQUEST

J
[ l
v l
ENTER, A |
l l
v v
ENQUEUE; > ENTER|
l
v
ENQUEUE

J
follows from mutuaj exclusion for serializers. Therefore

ENQUEUE;
|
v
DEQUEUE,; o ENQUEUE,
|
v
DEQUEUE,

since queues of a serializer are first-in-first-out. Since serializers are mutually exclusive we know that

DEQUEUE;

|
v

JO1 N-CROWD, -> DEQUEUE j

Therefore

JOIN-CROWD;

l
v

LEA VE-CROWDi --> DEQUEUE j

since the prerequisite for DEQ_UEUEJ is that the crowd must be empty. Now we can read off the
desired answer by transitivity:
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JOIN-CROWD;
I

v
RESOURCE-REQUEST,
I
Y
RESOURCE-REPLY;
|
v
LEAVE-CROWD;, - DEQUEUE,
I
v
JOIN-CROWD,
I
v
RESOURCE-REQUEST,

One extremely common specification is that an actor must reply to each request it receives (a
guarantee of service that implies that the actor is starvation-free and thus free of deadlock). For
serializers this is expressed in terms of events by simply requiring that for every
SERIALIZER-REQUEST event there is a corresponding SERIALIZER-REPLY event in the history.
Similarly the resource can be required to reply to requests by specifying that for every
RESOURCE-REQUEST event there is a corresponding RESOURCE-REPLY event in the history. A
serializer constructed using mutual_exclusion_2 is guaranteed to reply to requests provided that the
resource it encases is guaranteed to reply to requests.

The code for mutual_exclusion_1 looks slightly shorter than the code for mutual_exclusion_2, but that
is largely due to the extra words that indicate the structure of mutusl_sxclusion_2. In mutual_exclusion_1
the semaphore bookkeeping is explicit for the message passing to and from the resource. In
mutual_exclusion_2 the required bookkeeping is implicit in the structure of the language construct.
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SECTION VII --- READERS-WRITERS PROBLEMS

Vill - Readers-Writers Integrity Specification

A readers-writers serializer is intended to protect the integrity of a resource by scheduling access
to the resource in such a way that it is impossible for two processes to overlap in their use of the
resource if one of them is a writer. An event in which a message is received by the protected resource is
called a RESOURCE-REQUEST, of which there are two special cases: RESOURCE-READ and
RESOURCE-WRITE. In response to these requests the protected resource will produce responses which
will be called RESOURCE-REPLY events.

The integrity specification for a readers-writers serializer is that "a write request excludes all other
requests from the resource™. This integrity specification can be expressed in event terms as follows: if
SERIALIZER-WRITE; and SER]ALIZER-REQUEST, are two requests received by the serializer then
either

RESOURCE-WRITE; --> RESOURCE-R EPLY; ==
RESOURCE-REQUEST j =-> RESOURCE-REPLY i

or

RESOURCE-REQUEST; --> RESOURCE-REPLY; ==
RESOURCE-WRITE; --> RESOURCE-REPLY,

VII2 --- Readers-Writers Scheduling Specifications

Variations of the readers-writers problem derive from the desirability of imposing stronger
scheduling specifications than simply that the serializer must reply to requests that it receives. Note that
readers do not interfere with one another even if they are executing in parallel in the protectea
resource. Therefore allowing multiple readers into the resource concurrently can increase thruput.
Several variations of scheduling specifications that require more concurrency will be presented below.
In all of these implementations we will keep track of whether there are readers in the resource or there
is a writer in the resource by keeping a separate crowd for the readers and a separate crowd for the
writer (which will never have more than one member).

Below we will present several implementations of the readers-writers problems in which readers is
the crowd of readers in the protected resource and writer is the crowd of writers in the protected

resource. The following invariants are relevant to understanding all ¢f the implementations to be
presented below:

the size of the writer crowd is never greater than one
the readers crowd and the writer crowd are never both nonempty at the same time

SEPRESESR
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The fact that all of the above invariants are preserved will be immediately evident from inspection of
the code of all the implementations given below. No complicated chain of reasoning will be required.
This is an example of how properties of a scheduler implemented using serializers can be seen with

greater perspicuity than is possible from implementations using less structured arbitration primitives
such as semaphores.

Vii3 --- Writer Excludes Others

Let us introduce no new constraints beyond the primary one of insisting that a writer has sole
access to the resource. One possible implementation that would satisfy those constraints is the

one-at-a-time serializer presented above. Another implementation follows that would allow readers to
access the resource concurrently.

In the implementation below we provide that a resource which is to be scheduled for reading and
writing will receive messages of the form (read (using: directions)) and (write (using: directions)). The
directions included in these messages can be as complicated as desired up to and including an arbitrary
procedure for carrying out the transaction on the protected resource without side effects. Note that this
degree of generality in the directions can complicate verifying that the resource will reply to each request
which it is sent. Nevertheless, in the discussion below we will assume that the resource will always reply
to requests of the form (read (using: directions)) and (serite (using: directions)).

((writer_exclude_others =the_resource) = sa serializer which enforces that writers excludes others
sfrom the resource is implemented by constructing
(create_serializer sa serializer which has
(quecucs: readers_q writers_q) i;two queunes called readers_q and writers_q
(crowds: readers writer) stswo crowds called resders and writer
{entry: ;after entry
(cases : sthere are two cases for the message
(=> (read (using: =directions)) sreceive a request to read the resource using directions
(enqueue readers_q ienqueune on the readers quene to
(quarantee: (empty: writer}) ;quarantee that there is no soriter in the resource
(¢then: siwhen dequeued,
(relay_to the_resource sdeliver the message to the resource

(message: (read (using: directions)))
(thru: readers))))) ipassing thru the readers crowd
(=> (write (using: =directions)) sreceive a request to write in the resource using directions
(enqueue writers_g senqueue on the writers_q to

(guarantee: (empty: readers writer))
;guarantee that there are neither readers nor a writer in the resource

(then: swhen dequeued,

(relay_to the_resource ideliver the message to the resource
(message: (write (using: directions)))

(thru: writer))))))))) ;passing thru the writer crowd

It is easy to see that the above implementation guarantees that writers will exclude others from 1
the resource since if there is an element in the writer crowd then all the queues of the serializer are i
blocked.
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((size writer) < 1)
(if (nonempty: writer) then (empty: readers))

However, the above implementation does not satisfy the requirement that the serializer must always
reply to requests which it receives since nothing forces the readers crowd to eventually become empty. If
the readers crowd does not empty then a writer could be stuck forever in writers_q (this problem has its
roots in the violation of our recommendation that no two processes should be “ready to go” in a
serializer at the same time). Therefore the above implementation must be refined or interpreted in
some way in order to meet the specifications.

Vil4 --- First Come First Served .

The implementation given below satisfies the specification that the protected resource is served on
a first come first served basis. In addition, starvation is not possible with the first_come_first_served
serializer and a certain amount of concurrency is guaranteed. Note that the additional specification
results in an implementation that is simpler than the previous one. The added simplicity is due to the
ability of serializers to have processes waiting in a single queue for different conditions.

((first_come_first_served =the_resource) = sa first come first served s rializer of the resource which
scan be implemented by constructing
(create_serializer sa serializer which has
(quecues: waiting_q) ;a queue called the waiting_q
(crowds: readers writer) sand two crowds called readers and writer
(entry: ;after entry
“(cases sthere are two cases for the messagoe
(=> (read (using: =directions)) sreceive a request to read the resource using directions
(enqueue waiting_q senqueue on the waiting queue to
(guarantee: (empty: writer)) iquarantee that there is no writer in the resource
(then: ;when dequeued,
(relay_to the_resource ideliver the message to the resource

(message: (read (using: directions)))
(thru: readers))))) spassing thru the readers crowd
=> (write (using: =directions)) ireceive a request to write in the resource using directions
(enqueue waiting_q senqueue on the waiting queue to

(guarantee: (empty: resders writer))
;guarantee that there are neither readers nor a writer in the resource

(¢then: , swhen dequeued,

(relay_to the_resource sdeliver the message to the resource
(message: (write (using: directions)))

(thru: writer))))))))) > thru the swriter crowd

i
|

]
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Vil4a --- Requiring Concurrency in Implementations

In the readers-writers problems there is a basic integrity constraint that the serializer must
maintain, which is to ensure that a writer does not have access to the resource at the same time as any
other requestor. However, a simple one-at-a-time approach can easily guarantee this property. The
more complex versions of the problem attempt to provide readers with concurrent access to the resource
without starving the writers. When we say that some amount of concurrency is guaranteed, we mean

that the specifications for the serializer require that certain readers be given the opportunity to access
the resource at the same time.

Note that a serializer cannot guarantee that the requests to a protected resource are actually
processed in parallel, since either the structure of the resource or some externally defined scheduling
policy may prevent actual parallelism. We say that readers R; and R | are concurrent readers if

OIN-CROWD; --> LEAVE-CROWD;
' J
and

]OIN-CROWDj -=> LEAVE-CROWD;

The specifications for the first-come-first-serve serializer include a requirement for concurrency.
We can informally express this requirement as saying that whenever one reader's entry into the
serializer (an ENTRY event) immediately precedes another reader's entry, and the second reader enters
the serializer before the first reader enters the resource (a JOIN-CROWD event), then these two readers
must concurrently be in the resource. We can also give a more formal specification in terms of events:

If R, and Rj are readers such that

ENTRYi -=) ENTRY‘- -=) ]OlN-CROWDi
and

there is no requestor X, (a reader or writer) such that
ENTRY; -=> ENTRY, - ENTRYj

then R; and Ri must be concurrent readers, i.e.
JOIN-CROWD; --> LEAVE-CROWD‘-

and
jOlN-CROWDj --> LEAVE-CROWDi

Note that the above requirement would be the same if we required that the requestor X, be a writer,
although the proof would be somewhat more difficult.
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Vii4b --- Proof of Guaranteed Concurrency

A proof that the first_come_first_served serializer shown above satisfies the given concurrency
requirement proceeds by assuming the existence of two readers with the given relationship, then
showing that they must be concurrent readers. Since we have

ENTRY; -=> ENTRY; -=> JOIN-CROWD;

we know. that the reader R; must be in the waiting.q when the reader R j gains possession of the
serializer. R j must be enqueued directly behind R;, since by our assumptions there are no intervening
entries to put other requestors in the waiting.q. Therefore when reader R; does get into the resource

through a JOIN-CROWD event (thereby releasing possession of the serializer), then the requestor at the
head of the waiting_q must be R ; and the condition of (empty: writers) must be true. We then appeal to
the priority which serializers give to processes waiting in interal queues of the serializer.

JOIN-CROWD‘- ==> LEAVE-CROWD;

Since we know that JOIN-CROWD; --> JOIN-CROWD, and JOIN-CROWD j > LEAVE-CROWD i
we conclude that JOIN-CROWD, --> LEAVE-CROWD ¥ which completes the proof that R; and R jare
concurrent readers.

VIL5 --- Readers Priority

The following serializer forces readers into the resource concurrently. However, we need to guard
against starvation. Our approach is to allow ali waiting readers to enter the resource, then to designate
the writer which has been waiting as the new privileged writer, and keep further readers from entering
the resource until the privileged writer has relayed its message to the resource. After the privileged
writer has been served, then all readers which have been waiting for that writer to finish are allowed to
enter the resource, and a new privileged writer is chosen. A reader may not deliver a message to the
resource while there is a privileged writer, or there is a writer in the resource. A writer may not enter
the resource unless it is a privileged writer, and there are neither readers nor a writer in the resource.
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((read_concurrently =the_resource) = ia serializer which enforces concurrency among readers of
ithe resource is implemented by constructing
(create_serializer sa serializer which has
(queues: readers_q writers_q) itwo queues called readers_q and writers_q
(crowds: readers writer) stw0 crowds called resders and writer
(entry: safter entry
(cases sthere are two cases for the message
(=> (read (using: =directions)) ireceive a request to read the resource using directions
(enqueue readers_q ienquene on the readers queue to
(guarantee: (empty: writer)) ;quarantee that there are no writers in the resource
(then: ;when dequeued,
(relay_to the_resource sdeliver the message to the resource

(message: (read (using: directions)))
(thru: readers))))) spassing thru the readers crowd
=> (write (using: =directions)) ireceive a request to write in the resource using directions
(enqueue writers_q senqueue on the writers queue to

(guarantee: (empty: roaders_q writer))
squarantee that readers_q, and writer crowd are all empty
(then: ;when dequeued,
(enquzue readers_q » ienqueue on readers_q to
(guarantce: (empty: readers writer))
iguarantee that there are neither readers nor a writer in the resource

(¢hen: swhen dequeued,

(relay_to the_resource sdeliver the message to the resource
(message: (write (using: directions)))

(thru: writer))))INN) spassing thru the writer crowd

The above implementation is a little more complicated than the previous one. However, it is not
difficult to show that writers exclude others using the technique used for the previous implementation
since the following invariants are maintained:

((size writer) $ 1)
(if (nonempty: writer) then (empty: resders))

In order to show that neither readers or writers can possible starve, consider the following “traffic
diagram” for the queues and crowds of the serializer:
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Entering readers Entering writers
I l
| I
| \
| writers_q
: |
et + N +

| (empty: readers_q writer)

| (empty: readers writer)

readers : uriter

Traffic Diagram for Queues and Crowds of resd_concurrently

The idea of the proof is to first show that the readers_q must eventually empty, then to show that any

writer in the writers_q must eventually migrate to the resders_q. These two conditions ensure that every
read or write request to the serializer is eventually satisfied.

Vii5a --- Proof that the Readers Queue Must Empty

If there is a privileged writer in the readers_q, theh there is only one such writer, and it must be
at the head of the queue. A writer can only enter the readers_q after it has been dequeued from the
writers_q, and the guarantee of every writer exiting the writers_q is that the resders_q is empty. Thus,

not only is it true that there may be only one writer in the resders_q, the writer must also be at the head
of the queue if it is there.

Processes may only enter the readers crowd or the writer crowd by first exiting the readers_.q. We
have assumed that the_resource is correct in that every message sent to the resource will eventually
produce a single reply. Therefore, if a writer is at the head of the readers_q, it is guaranteed that no
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messages will be sent to the_resource from the serializer until both the readers crowd and the writer
crowd are empty.

By a similar argument, if a reader is at the head of the readers_q, the writer crowd must
eventually empty, which implies that a reader at the head of the readers_q must eventually exit the
queue. Once a single reader is dequeued from the resders_q all readers in the resders_q in front of a
writer must be dequeued. For any reader in the readers.q an event of the form
ESTABLISH ED,gaders_q Must be followed by an event of the form JOIN-CROWD, 4o, For every
such JOIN-CROWD event, the serializer is released, and if the readers_q has a reader at its head, that
reader must be dequeued, since the resder_q is the only internal queue with its guaranteed condition true
(the writer ~rowd remains empty).

Thus, we have shown that ali readers must exit the readers_q if they occur before a writer in that
queue or if there is no writer in that queue. Further, if a writer is at the head of the readers_q then it
also must exit the readers_q. Once a writer exits the resders_q there may be no additional writers added
to that queue until it is empty. Therefore, the resders_q must empty.

VIiL5b --- Proof That No Process in the writers_ g Can Starve

The idea behind this proof is simple. Any writer in the writers_q is waiting for both the writer
crowd and the readers_q must empty. By our assumption about the resource there must be a
RESOURCE-REPLY message for any writer, so the writer crowd must empty. We have just proved
above that the readers_q must empty. Therefore the process at the head of the writers_.q must
eventually be dequeued, which is sufficient to show that no process in the writers_q can starve.

VIil5c --- Requiring Concurrency for Reader’s Priority

The readers-priority serializer is intended to give more thruput to readers at the expense of
writers, while still guaranteeing that each write request will receive a reply. Our informal requirement
is whenever one reader's entry into the serializer follows another reader’s entry (regardless of
intervening serializer entries), and the second reader enters the serializer before the first reader enters
the resource, then the two readers are concurrent within the resource. In terms of events, this
requirement can be expressed as:

If R, and Ri are readers such that
ENTRY; --> ENTRY; --> JOIN.-CROWD;
then R; and Rj must be concurrent readers, i.e.
JOIN-CROWD; -=» LEAVE-CROWD,

and
_]OIN~CROWD,- - LEAVE-CROWD‘
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Note that the above requirement is stronger than the concurrency requirement given for
first_come_first_served.

All readers that have entered the serializer and not yet in the resource are in the readers_q, and
the only writer that can be in the readers_q must be at the head of the queue. We have previously
shown that once one reader can leave the readers_q then all must leave the readers_q and enter the
resource. We note that by the axiom of giving internal queues priority over external queues all readers
in the readers_q must enter the resource before any reply from the resource will enter the serializer
(through a LEAVE-CROWD event). This completes the proof.

L
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SECTION VIII --- ANALYSIS of SERIALIZERS

Viili - Comparison with Monitors

Serializers are generalizations of the "secretary” concept which was conceived by Dijkstra and
later developed into "monitors” by Brinch-Hansen, and Hoare. The purpose of serializers is to schedule
access to shared resources in order to protect their integrity. Roughly speaking, serializers are analogous
to monitors in the same way that actors are analogous to SIMULA-67 classes. A serializer is an actor
that will allow only one process to have possession at a time whereas a monitor is a SIMULA-67 class
that will allow only one process to be executing inside it at a time. A general principle of efficient
operation that is applicable to both serializers and monitors is to try to keep the serializer [monitor)

unlocked as much of the time as possible to keep it from being a bottleneck in the operation of a larger
system.

We believe that serializers are easier to write and verify in a modular fashion than monitors.
The correctness of a serializer is independent of the way in which it is used. It is more difficult to
verify the correctness of a monitor since the ordering of monitor operations and access to the protected

‘resource is dependent on the programs using the monitor. Serializers support modular programming

better than monitors because serializers can be sensibly nested inside one another whereas usually it is
unprofitable to nest one monitor inside another because the outer monitor will be tied up while the
inner one is in use. A further advantage for serializers is that use of a protected resource appears
identical to the use of the unprotected resource in a program that uses the resource.

Using serializers the condition associated with an enqueue command is explicitly stated in the code
of the implementation whereas the conditions used in the WAIT statement in a monitor are syntactic
constructs which do not explicitly state what condition must be guaranteed in order to proceed. A
process which needs to wait for some condition to be guaranteed before it proceeds explicitly states the

condition in the serializer. In our experience this feature lessens the number of internal queues and
tends to simplify program proofs.

Another difference is the use of crowds rather than counters to keep track of processes that have
been allowed to access the encapsulated resource. While there is an additional cost associated with such
accounting, we believe that the benefits will make the use of crowds a decided advantage. It is possible
to examine the crowds to determine which processes are currently accessing which resources. We expect
that this will have significant impact on debugging programs that use parallel processes. Furthermore,

if some process must be terminated externally, then the resources it is accessing can be reclaimed in a
modular fashion.

Axioms about monitors and implementation of monitors are both made more difficult by the
necessity of having an "urgent queue”. Proofs of programs using the SIGNAL statement are made
more complicated by the necessity of considering the possible effects of processes emerging from the
urgent queue. Hoare states in his paper on monitors that he considers it to be good practice to exit a
monitor immediately after a SIGNAL statement. We consider it to be a practice worthy of enforcement.
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All internal queues in a serializer are explicit, and explicit signals

for emerging from a queue are explicitly listed at the point of enqu

SERIALIZERS

do not occur. Rather, the conditions
eueing. ' |
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SECTION IX --- MORE GENERAL SERIALIZERS

Serializers need to be generalized in several ways in order to be a general purpose
synchronization mechanism.

Thus far in this paper we have restricted our attention to serializers which use first-in first-out
queues as the mechanism for scheduling the release of processes waiting for some condition. It is
necessary to generalize this mechanism in order to conveniently solve certain scheduling problems. For
example Hoare has used priority queues to solve the disk head scheduling problem. Below we present
an implementation of a virtual disk which efficiently schedules disk accesses to a real physical disk.
The operations on the virtual disk are exactly the same as the ones defined on the physical disk. The
impleimentation given below uses an algorithm similar to one used by Hoare in an implementation using
monitors. However, it will be possible to prove that our implementation using serializers always
performs all disk operations which are requested. It is not possible to prove this property for the
implementation using monitors because a process might request the disk and then never release it.
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((virtual_disk =physical_disk) = ;a virtual disk behaves like a physical disk with optimized head motion :

(lee et
(current_position initially 0) sthe current position initialized to O |
(current_direction initially up) sthe current direction of motion is initially up ’

then

(create_serializer : screate a serializer with

(priority_quecues: up_queue down_queus) ;two priority queues

(crowds: disk_users) ;one crowd

(entry: ;after gaining possession

(=> (disk_request (operation: =op) (track: =track_num))
sreceive disk request with specified operation and track number
(lee ;define the procedures wait_up and wait_down as follows
((wait_up) = sthe procedure wait_up is defined as follows
(enqueue up_queue (priority: track_number)
senqueue in the up queue with priority given by the track numbear

(guarantee: sto guarantee that
(and (empty: disk_users) smo one is using the physical disk
(or (empty: down_queue) sand that either the down queue is empty
(current_direction = up)))) jor an upsweep is in progress
(then: (current_position « track_number) sthen update the position
(current_direction « up) h
(relay_to physical_disk srelay the request to the physical disk
(message: (disk_request (operation: op) (track: track_num)) !
(thru: disk_users)))))) ;passing thru the disk users crowd
((wait_down) = sthe procedure wail_down is defined as follows
(enqueue down_queue senquene in the down quene
(priority: (number_of_tracks = track_number))
(guarantee:

(and (empty: disk_users) (or (empty: up_gueue) (current_direction = down))))
(then: (current_position « track_number)
(current-direction « down)
(relay_to physical_disk
(message: (request (operation: op) (tracks track_num)))
(thru: disk_users)))))
ther
(rules track_number 38f the track number is
(=> (> current_position) (wait_up))
;greater than the current position then wait in the up queue
(=> current_position  ;else if the track number is the same as the curront position

(rules current_direction sthen if the current direction
(=> up (wait_down)) sis up then wait in the down queue
(=> down (wait_up)))) selse wait in the up queue

(=> (< current_position) (wait_down))))))))
solse if the track number is less than the current position then wait in the down queue
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The proof that the above implementation always performs disk operations which are requested is
accomplished by showing that the disk head sweeps the disk in both the upward and the downward
direction servicing all requests for the tracks which it passes over. There are two cases to the proof:

Case I: One of the queues is empty. This means that any requests in the other queue are
served in order of smallest priority number. All of the requests will be served because
any new entries in the nonempty queue must have higher priority numbers than the
lowest priority number already in the queue. The priority numbers are bounded above
by the number of disk tracks. Since the internal queues of a serializer have absolute
_priority for next possession of the serializer over external requests, it follows that only
finitely many new requests can enter a queue during each physical disk operation.
Therefore if one of the queues remains empty then the other will eventually empty.

Case 2: Both the up_queue and the down_queue are nonempty. The queue to be served is
determined by the current_direction. The argument used in Case | can be used to show
that if current_direction is up then it will remain up until up_queve has emptied and

current_direction will then be changed to down. An analogous result to the previous
statement holds with “up” replaced by "down".
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SECTION X --- FUTURE WORK

The simple specification that "starvation is prohibited” is common to almost all synchronization
specifications. Yet serializers at present make no such guarantee. They do make it easier to prove that
an implementation using a serializer is free of the danger of starvation by facilitating the proof that
the serializer always replies to requests which it receives. We feel that research should continue to

search for mechanisms that provide effective guarantees of such properties, yet also provide sufficient 1
generality to cope with a wide range of problems.

Serializers have potential for use in robust systems in that more information is available for error
recovery. The additional information is useful for implementing debugging features, deadlock
detection, and gracefully backing processes out of protected resources.
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SECTION XI --- CONCLUSIONS

In this paper we have introduced a modular arbitration primitive called a serializer which is a
generalization and improvement of the monitor construct previously developed by Brinch-Hansen and
Hoare. Serializers aid in the synthesis of modular synchronizers because their structure corresponds in
a natural way to typical specifications for useful synchronizers. The structure imposed by using

serializers provides important guarantees that aid in proving that the implementation meets its
specifications.

The specifications for a serializer include integrity specifications relating the order of access to
the type of access, and scheduling specifications to ensure that differing types of access occur in the
proper order. Part of this ordering specification included a specification requiring that certain
requestors must be given the opportunity to use the resource concurrently. In the readers-writers
serializer, we gave the integrity specifications that readers and writers were mutually exclusive in
accessing the resource, and that at most one writer could access the resource at a time. Our different
solutions to the readers-writers problem resulted from dif ferent scheduling specifications.

We have attempted to explicitly introduce facilities into serializers that directly correspond to
synchronization specifications. The constraint that the resource is not being accessed by either readers
or writers when a writer enters is explicit in the code of our implementations, as is the requirement that
Mo writers are accessing the resource when a reader enters. Serializers provide that the condition for a
waiting process to proceed is explicitly stated. In this way integrity specifications can be directly
expressed in the language. Scheduling specifications are more complicated. We have been able to use a
specification language based on partial orders among events to good effect to express scheduling
specifications. Furthermore, the structure of the serializers has enabled us to give simple intuitive
proofs that various scheduling specifications are satisfied by implementations that use serializers.
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Interface Workshop on Interprocess Communication in March 1975. In December 1975 this paper was
extensively revised to reflect improvements in serializers that were achieved in the PLASMA
implementation meetings that fall in which Russ Atkinson, Mike Freiling, Carl Hewitt, Kenneth Kahn,
Henry Lieberman, Marilyn McLennan, Ronald Pankiewicz, Brian Smith, and Aki Yonezawa were
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